博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
陶哲轩实分析习题8.5.19
阅读量:6475 次
发布时间:2019-06-23

本文共 2120 字,大约阅读时间需要 7 分钟。

Let $X$ be a set, and let $\Omega$ be the space of all pairs $(Y,\leq)$,where $Y$ is a subset of $X$ and $\leq$ is a well ordering of $Y$.If $(Y,\leq)$,$(Y',\leq')$ are elements of of $\Omega$,we say that $(Y,\leq)$ is an initial segment of $(Y',\leq')$ if there exists an $ x\in Y'$ such that $ Y:=\{y\in Y':y<'x\}$(so in particular $ Y\subsetneq Y'$),and for any $ y,y'\in Y$,$ y\leq y'$ if and only if $ y\leq'y'$.Define a relation $ \preceq$ on $ \Omega$ by defining $ (Y,\leq)\preceq (Y',\leq')$ if either $ (Y,\leq)=(Y',\leq')$ or $ (Y,\leq)$ is an initial segment of $ (Y',\leq')$.Show that $ \preceq$ is a partial ordering of $ \Omega$.

 

 

 

Proof:
1.Reflexivity:$\forall (A,\leq)\in \Omega$,$(A,\leq)=(A,\leq)$,so $(A,\leq)\preceq(A,\leq)$.
2.Anti-symmetry:If $(A,\leq)\preceq(B,\leq')$,and $(B,\leq')\preceq(A,\leq)$,then if $(B,\leq')=(A,\leq)$,done.Otherwise,$(A,\leq)$ is an initial segment of $(B,\leq')$,and $(B,\leq')$ is an initial segment of $(A,\leq)$,this contradicts So $(A,\leq)=(B,\leq')$.
3.Transitivity:If $(A,\leq)\preceq(B,\leq')$,and $(B,\leq')\preceq (C,\leq'')$,then $(A,\leq)\preceq (C,\leq'')$.This is because when $(A,\leq)\preceq(B,\leq')$,if $(A,\leq)=(B,\leq')$,then of course $(A,\leq)\preceq (C,\leq'')$.If $(A,\leq)$ is an initial segment of $(B,\leq')$,then $A=\{y\in B:y<'x\}$,because $(B,\leq')\preceq (C,\leq'')$,if $(B,\leq')=(C,\leq'')$,then of course $(A,\leq)\preceq (C,\leq'')$.If $(B,\leq')$ is an initial segment of $(C,\leq'')$ which means that $B=\{y\in C:y<''c\}$.Then it is obvious that $(A,\leq)$ is an initial segment of $(C,\leq'')$.$\Box$


 

There is exactly one minimal element of $\Omega$,what is it?

 

Proof:

The minimal element of $\Omega$ is $(\emptyset,\leq)$.There is no smaller.


Using Zorn's lemma,conclude the well ordering principle:Every set $X$ has at least one well-ordering.
Proof:
See


Use the well ordering principle to prove the axiom of choice.
Proof:From the well ordering principle we know that $I$ can be well ordered ,then by using ,we can easily conclude the axiom of choice.$\Box$

转载于:https://www.cnblogs.com/yeluqing/archive/2013/01/29/3827496.html

你可能感兴趣的文章
搭建AVL树
查看>>
个人练习-jq 鼠标移上移出查看图片(放大)提示
查看>>
js函数
查看>>
树形控件(CTreeCtrl和CTreeView)
查看>>
*循环单链表
查看>>
杭电3371--Connect the Cities(最小生成树)
查看>>
Codeforces Round #564 (Div. 2) A. Nauuo and Votes
查看>>
linux 下 nginx的负载均衡
查看>>
lua 2
查看>>
linux php多版本
查看>>
06任务开启线程task, 任务开启不能带参数
查看>>
bootstrap
查看>>
[转] mongoose 之Shema
查看>>
[转] 重定向 CORS 跨域请求
查看>>
在react中实现打印功能
查看>>
MySql导入Sql文件
查看>>
python pcapy 安装错误 link.exe failed with exit status 1120
查看>>
1592: [Usaco2008 Feb]Making the Grade 路面修整
查看>>
对GCDAsyncSocket第三方的封装
查看>>
[译] Flutter 从 0 到 1
查看>>